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Abstract 15 

We present a new method to infer nitrogen oxides (NOx) emissions and lifetimes based on tropospheric nitrogen dioxide (NO2) 

observations together with reanalysis wind fields for cities located in polluted backgrounds. Since the accuracy of the method is 

difficult to assess due to lack of “true values” that can be used as a benchmark, we apply the method to synthetic NO2 observations 

derived from the NASA-Unified Weather Research and Forecasting (NU-WRF) model at a high horizontal spatial resolution of 4 

km × 4 km for cities over the continental US. We compare the inferred emissions and lifetimes with the values given by the NU-20 

WRF model to evaluate the method. The method is applicable to 26 US cities. The derived results are generally in good agreement 

with the values given by the model, with the relative differences of 2 % ± 17 % (mean ± standard deviation) and 15 % ± 25 % for 

lifetimes and emissions, respectively. Our investigation suggests that the use of wind data prior to satellite overpass time improves 

the performance of the method. The correlation coefficients between inferred and NU-WRF lifetimes increase from 0.56 to 0.79 

and for emissions increase from 0.88 to 0.96 when comparing results based on wind fields sampled simultaneously with satellite 25 

observations and averaged over 9 hours data prior to satellite observations, respectively. We estimate that uncertainties in NOx 

lifetime and emissions arising from the method are approximately 15 % and 20 %, respectively, for typical (US) cities. We expect 

this new method to be applicable to NO2 observations from the TROPOspheric Monitoring Instrument (TROPOMI) and 

geostationary satellites, such as Geostationary Environment Monitoring Spectrometer (GEMS) or the Tropospheric Emissions: 

Monitoring Pollution (TEMPO) instrument, to estimate urban NOx emissions and lifetimes globally. 30 
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1 Introduction 

Nitrogen oxides (NOx), consisting of nitrogen dioxide (NO2) and nitric oxide (NO), are important atmospheric trace gases that 

actively participate in the formation of tropospheric ozone and secondary aerosols and accordingly have a significant effect on 35 

human health and climate (Seinfeld and Pandis, 2006). NOx emission sources include anthropogenic activities, biomass burning, 

soil emissions, and lightning. Fossil-fuel burning from mobile and industrial emitters represents the largest source of anthropogenic 

NOx emissions; these sources are usually clustered near densely populated urban areas (Crippa et al., 2018).  

We traditionally rely on a bottom-up method to estimate anthropogenic NOx emissions for a country or a region based on their 

total fuel use and averaged emission factors, which are subject to uncertainties due to incomplete understanding of real world 40 

operating conditions and spatial distributions (Butler et al., 2008). Some sources may be missing from bottom-up emission 

inventories (McLinden et al., 2016). Additionally, estimates of NOx emissions may become outdated when fuel consumption and 

emission factors change dramatically. For instance, NOx emissions from China decreased by 21 % from 2011 to 2015 due to wide 

deployment of denitration devices (Liu et al., 2016a). Inferring emissions for individual cities is even more challenging, due to the 

difficulties in acquiring a complete and reliable database for fuel consumptions and emission factors at city level. Proxies such as 45 

population density, industrial productivity, and road network maps are often used to downscale national/regional emissions to finer 

scales, which may incorrectly allocate emission sources spatially (Butler et al., 2008).  

Satellite observations of tropospheric NO2 have been widely used to infer the strength of NOx emissions. Satellite instruments, 

e.g., the Ozone Monitoring Instrument (OMI; Levelt et al., 2006, 2018) and TROPOspheric Monitoring Instrument (TROPOMI; 

Veefkind et al., 2012), are used to retrieve the column density of NO2 in a vertical column of air. These data can then be related to 50 

NOx emissions by considering chemical conversion and transport. Chemical transport models (CTMs) were initially employed to 

exploit NO2 measured from space as a constraint to improve NOx emission inventories based on mass balance (e.g., Martin et al., 

2003; Kim et al., 2009; Lamsal et al., 2011). Techniques such as the four-dimensional variational (4D-Var) method (e.g., Henze 

et al., 2007, 2009), extended Kalman filter (e.g., Ding et al., 2017), ensemble Kalman filter (e.g., Miyazaki et al., 2017), and hybrid 

mass balance/4D-Var (e.g., Qu et al., 2019) have also been used to improve emissions estimates within CTMs.  55 

Several studies have inferred emissions independent of CTMs (e.g., Beirle et al., 2011; Liu et al., 2017; Laughner and Cohen, 

2019). Such investigations were inspired by a pioneering study that used the downwind decay of NO2 in continental outflow regions 

to estimate the global NOx lifetime and total emissions (Leue et al., 2001). Beirle et al. (2011) first proposed an empirical function 

to describe the plume distribution around an isolated city without inputs from CTMs. Follow-up studies have adopted this function 

to provide estimates of NOx emissions from power plants and cities based on OMI (e.g., de Foy et al., 2015 and Lu et al., 2015) 60 

and TROPOMI (e.g., Goldberg et al., 2019) observations. Additional methods, such as the plume rotation technique (Pommier et 

al., 2013; Valin et al., 2013) and the divergence approach (Beirle et al., 2019), were developed to refine the approach of Beirle et 

al. (2011). More recent studies explored additional constraints for the empirical function using simulated atmospheric composition 

from models (e.g., Lorente et al., 2019; Lange et al., 2021). For sources with a polluted background, Liu et al. (2016b) proposed a 

different fitting function to consider the interferences from surrounding sources; this approach has been used to estimate NOx 65 

emissions for European cities (Verstraeten et al., 2018). 

The uncertainties in satellite-derived emissions inferred from CTM-independent approaches have rarely been investigated. Existing 

studies usually quantify the uncertainties based on results from sensitivity analyses (e.g., Beirle et al., 2011), since we usually lack 

“true values” that can be used as a benchmark for validation. de Foy et al. (2014) tested CTM-independent approaches using 

simulated NO2 column densities from a single point source with a specified emission and chemical lifetime. The good consistency 70 
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between the derived values and the specified values given to drive the simulation suggests that the uncertainty of the Beirle et al. 

(2011) approach is small for an ideal, isolated source. However, the performance of the approach in the real world with complex 

source distributions has not yet been evaluated. 

Here, on the basis of previous approaches (Beirle et al., 2011; Liu et al., 2016b), we develop a new CTM-independent approach 

for inferring NOx lifetimes and emissions for cities with polluted backgrounds and complex spatial distribution of interfering 75 

emissions. We use synthetic NO2 observations derived from a model simulation to evaluate the performance of the new approach 

and to estimate its uncertainties. An overview of the synthetic observations, the methodology and features of the new CTM-

independent approach is provided in Sect. 2. We evaluate results by comparing the inferred emissions and lifetimes with values 

from the model simulation in Sect. 3.1. Section 3.2 compares the performance of the method developed in this work with previous 

approaches (Beirle et al., 2011; Liu et al., 2016b). Section 3.3 discusses the uncertainties of NOx lifetimes and emissions derived 80 

from the new approach. Section 4 presents a summary of the performance of the new method and the future work plans for applying 

the method to satellite observations. 

2 Data and method 

In this section, we develop an evaluation system to assess the performance of our newly-developed CTM-Independent SATellite-

derived Emission estimation Algorithm for Mixed-sources (MISATEAM). Figure 1 displays the schematic of the evaluation 85 

system. MISATEAM uses satellite retrievals of tropospheric NO2 vertical column densities (VCDs), together with wind 

information from a meteorological reanalysis, to infer NOx lifetimes and emissions for cities. Cities are usually non-isolated sources 

with polluted backgrounds (Fig. S1). Additionally, emissions from cities may spread out and make cities not (quasi) point sources 

even at the footprint of satellite observations (a few km; Fig. 3). We refer to these cities as mixed-sources.  

To evaluate MISATEAM, we replace satellite observations with synthetic NO2 VCDs derived from the NASA-Unified Weather 90 

Research and Forecasting (NU-WRF) model (Tao et al., 2013; Peters-Lidard et al., 2015) (Sect. 2.1). We then apply MISATEAM 

to the synthetic NO2 VCDs and NU-WRF meteorological fields to infer urban NOx lifetimes and emissions (Sect. 2.2). We 

investigate the impact of temporal variations in wind fields on derived NOx lifetimes and emissions (Sect. 2.3). In Section 2.4, we 

describe the benchmark NOx emissions directly given by NU-WRF and NOx lifetimes deduced from known NOx emissions and 

concentrations (hereafter referred to as “given emissions and NU-WRF lifetimes”) that we will compare with the MISATEAM-95 

derived lifetimes and emissions. Analysis of the uncertainties in these datasets, including satellite observations and wind fields, is 

outside the scope of the study. We briefly discuss the potential impact of ignoring systematic errors in Sect. 3.3.2. 

2.1 Synthetic NO2 VCDs: NU-WRF simulations 

We use a regional modelling system, NU-WRF (Tao et al., 2013; Peters-Lidard et al., 2015), to simulate tropospheric NO2 VCDs 
over the continental US. NU-WRF was developed from the advanced research versions of WRF (Michalakes et al., 2001) and 100 
WRF-Chem (Grell et al., 2005) with the addition of several NASA-developed components (e.g., Chou and Suarez, 1999; Chin et 
al., 2002, 2007; Kumar et al., 2006; Peters-Lidard et al., 2007; Shi et al., 2010). The gas-phase chemical mechanism in NU-WRF 
is the second-generation regional acid deposition model (RADM2, Gross and Stockwell, 2003). The aerosol module is the Goddard 
Chemistry Aerosol Radiation and Transport (GOCART) model (Chin et al., 2002). We use the anthropogenic emissions based on 
the 2011 National Emissions Inventory (NEI) compiled by the US Environmental Protection Agency (US EPA, NEI 2011) but 105 
with a few modifications, in which the measurements from OMI, the ground-based Air Quality System (AQS), the in-situ 
continuous emissions monitoring in power plants, and the Air Pollutant Emissions Trends Data compiled by the US EPA 
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(https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data), have been employed to adjust the baseline 
emissions (Tong et al., 2015; Tao et al., 2020). The simulation also includes the fire emissions from the Global Fire Data version 
4 with small fires (GFED v4s, van der Werf et al., 2017; Randerson et al., 2015); biogenic emissions from the online calculation 110 
using the Model of Emissions of Gases and Aerosols from Nature version 2 (MEGAN2, Guenther et al., 2006); dust emissions 
from the on-line estimation based on the surface wind speed, soil moisture, and soil erodibility (Ginoux et al., 2001; Kim et et al., 
2017); and sea salt emissions from the on-line computation based on the method by Gong (2003). 

We run NU-WRF for 2016 at a high horizontal spatial resolution of 4 km × 4 km and 40 vertical layers extending from surface to 
50 hPa in this study. We integrate NO2 concentrations from the surface to the tropopause (~10 km) to calculate tropospheric NO2 115 
VCDs. The meteorological initial and lateral boundary conditions are derived from the Modern Era Retrospective-Analysis for 
Research and Applications version 2 (MERRA-2, Rienecker et al., 2011; Gelaro et al., 2017). The chemical initial and lateral 
boundary conditions are derived from the results of the Community Atmosphere Model with chemistry (CAM-chem, Lamarque et 
al., 2012). A 7-day model spin up following the recommendation by Berge et al. (2001) is used. 

Figure 2A illustrates the six-month average of the simulated hourly mean tropospheric NO2 VCDs sampled at the local overpass 120 

time of TROPOMI. The NOx emissions used to drive NU-WRF over the model domain for the same time period are presented in 

Fig. 2B. We focus on cities with populations > 200,000, which have been defined as medium-size urban areas in Organisation for 

Economic Co-operation and Development (OECD) countries. Nearby cities (located within 50 km of the largest city in a given 

urban area) are considered as one city cluster when applying MISATEAM to infer lifetimes and emissions. Cities on the boundary 

of the model domain, e.g., Seattle and San Francisco, are excluded from the following analysis, because the data for their 125 

inflow/outflow plumes are partially missing from the model output and thus do not meet the requirements of MISATEAM (see 

details of the fit interval in Sect. 2.2). This filtering results in a total of 60 cities and urban conglomerations as the candidates for 

applying MISATEAM. 

2.2 Emission estimation algorithm 

We develop MISATEAM based on the methods of Beirle et al. (2011) and Liu et al. (2016b). We adapt the basic approach of Liu 130 

et al. (2016b) that estimates NO2 spatial emissions patterns, E(x), using NO2 observations, LDcalm(x), following 

𝐸(𝑥) = !"#$%	×	[)*!"#$(,)	.	/]
1

,                            (1) 

where E(x) is a function of distance from the city center (denoted by x) in a particular direction and integrated over a given distance 

in a direction y (perpendicular to that of x). The mean emission maps (two-dimensional, 2D) are reduced to 1D along the respective 

direction x by integration across the direction y. LDcalm(x) are the so-called NO2 line densities, defined as the observed NO2 VCDs 135 

(units molec cm-2) under calm wind conditions (wind speed < 2 m s-1) integrated in the same way as E(x) to give units of molec 

cm-1 as in Beirle et al. (2011). ratio is the ratio of NOx to NO2. b represents a NO2 background, which is derived by analyzing the 

distribution of NO2 VCDs.  τ is the NOx lifetime, which is the fitting parameter. We then use the following model function, f(x), to 

describe NO2 line densities under windy conditions (wind speed > 2 m s-1) LDwindy(x): 

𝑓(𝑥) = 2(,)
!"#$%	×	3

∗ 𝑒.
%

&	×	) + 𝑏  140 

        = [)*!"#$(,)	.	/]
1	×	3

∗ 𝑒.
%

&	×	) + 𝑏,                                                                         (2)	

where w is the mean wind speed at the emission level in a given direction x, and * denotes convolution. Figure 3 illustrates the 

calculation of LDwindy(x).  
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Note that τ is assumed to be an effective mean dispersion lifetime, i.e., the result of the effect of deposition, chemical conversion, 

and wind advection, because we do not consider downwind changes in the fitting function, such as due to variations in w or ratio 145 

or lifetime itself. Additional technical details of the model function f(x) and its differences compared to those proposed by Liu et 

al. (2016b) are given in Appendix A.  

To estimate b, we first calculate the mean NO2 VCD under calm wind conditions for grid cells within the lowest 5th percentile of 

NO2 VCDs for each city. This produces a good approximation of the mean NO2 VCD for grid cells with low NOx emissions (i.e., 

the lowest 5th percentile of NOx emissions). We then multiply this mean value by the width of the across-wind integration interval 150 

to derive b.  

We use ratio of 1.32 to represent “typical urban conditions and noontime sun” (Seinfeld and Pandis, 2006). We investigate the 

effect of using a constant value of ratio on derived emissions in Sect. 3.1; it is found to be insignificant. Note that the derived 

lifetime τ is not sensitive to the magnitude of ratio, as τ is determined by the relative decay pattern. 

Finally, we use estimates of b and ratio in Eq. (2), along with values of w, LDcalm(x), and LDwindy(x) from the model simulation to 155 

infer τ and E(x). As displayed in Fig. 1, we use the NU-WRF high-resolution tropospheric NO2 VCDs sampled at the local overpass 

time of TROPOMI as the synthetic NO2 VCD observations, together with the NU-WRF meteorological wind information, to 

estimate urban NOx emissions. In other words, here we assume perfect knowledge of the winds and do not further consider the 

impact of errors in w. As in previous studies, we only analyze data from April to September, in order to exclude winter data that 

have larger uncertainties and longer NOx lifetimes. We also investigate the impact of the inclusion of winter data in Sect. 3.3.1; it 160 

is found to be associated with a larger uncertainty. We further compute total emissions for each city, Emis, by summing E(x).  

We perform a nonlinear least-squares fit of f(x) to the observed line densities under windy conditions, LDwindy(x), with τ as the 

single fitting parameter. We use the package of scipy.optimize.curve_fit from the Python software library to perform the fitting. 

We set the fit interval to 150 km in downwind direction, which corresponds to the e-folding distance for τ = 6 h and w = 7 m s-1. 

The fit interval in the upwind direction and the y direction are set to half the e-folding distance (75 km); the resulting area is large 165 

enough to cover a highly populated and spread-out metropolitan region such as New York City. The definition of the fit interval 

in upwind and downwind direction, and the across-wind integration interval are illustrated in Fig. 3. Note that we use LDcalm(x) 

over a larger horizontal interval of 450 km to calculate the convolution in Eq. (2), in order to eliminate the edge effect of 

convolution. Fitting results of insufficient quality (i.e., the correlation coefficient R between the fitted and observed NO2 LD < 0.9, 

and one standard deviation error of τ > 10%) are discarded. We infer emissions simultaneously by summing E(x) in Eq. (1). We 170 

perform the fit for all wind direction sectors and then average the fitted τ and corresponding total emission Emis with good quality, 

using the fit residuals as inverse weights, to yield a best estimate of <τ> and <Emis> for a given city. The standard deviation of the 

fit results for different wind directions has been used to quantify uncertainties in Sect. 3.3.2. 

We develop the new model function aiming for determining emissions for mix-sources, instead of isolated sources within a clean 

background considered by Beirle et al. (2011). It is also different from that of Liu et al. (2016b), which was developed for complex 175 

sources, but adopted an additional model function to fit emissions in a separate step. More comparisons with those two previous 

methods will be discussed in Sect. 3.2. 

We use the city of New York as a case study to demonstrate our approach. This city is well suited for illustrating the strength of 

MISATEAM to estimate emissions for mixed sources, because it is a large city with multiple point and areal sources and is 

surrounded by many other large sources. Figure 3 displays the complex spatial distribution of sources around New York. Under 180 
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southwesterly wind, the city of Philadelphia is located in the upwind direction and Long Island is located in the downwind direction, 

both of which are significant NOx sources.  

We use wind fields averaged from the surface to 1000 m altitude for w in this study. The synthetic NO2 VCDs around New York 

are sorted by wind directions (Figure S1). Figure 4A displays the observed line densities for calm (blue circles) and southeasterly 

winds (red circles) around New York and the fitted model function f(x) (red lines). Generally, f(x) describes the observed downwind 185 

patterns very well; the coefficients of determination (R2) between observation and fit are 0.90–0.98 for different wind directions. 

Results for three wind direction sectors are discarded due to the fitting results being of insufficient quality. The resulting lifetimes 

show a range of 2.2–2.9 h, which result in emissions of 754–996 mol h-1 for different wind directions, as shown in Fig. 4A–E.  

2.3 Impact of temporal variations in wind fields 

CTM-independent emission estimation algorithms usually assume a steady wind field over the duration of NOx lifetime. In the 190 

demonstration in Sect. 2.2, we use the wind fields sampled at the satellite overpass time to drive MISATEAM, consistent with 

previous studies (e.g., Beirle et al., 2011; Valin et al., 2013; Lu et al., 2015; Liu et al., 2017, 2020; Goldberg et al., 2019). This is 

expected to be reasonable for species with a short lifetime of a few hours such as NOx near noon of non-winter seasons. In reality, 

wind fields are variable over the NOx lifetime. Consequently, NOx emitted at a time prior to the satellite overpass may be 

transported under different wind conditions than those at the overpass time.  195 

Figure 5 illustrates the temporal variations in wind fields around New York. We use the southwesterly wind direction (with a valid 

fitting result) for demonstration. We select southwesterly winds observed at the overpass time as the baseline and find their 

backward trajectories for up to 8 hours. The backward trajectories are given at a time step of one hour. Not surprisingly, winds are 

not constant during the 9 hours from 8 hours before the overpass time to the exact hour of the overpass time. However, their 

temporal variations are very small; the percentage changes of wind speeds are less than 5 % on average. Such minor changes have 200 

been confirmed for other wind directions with valid fitting results as well. For wind directions without good fit results, we observe 

larger variations. For instance, the percentage change of projected wind speeds among the same 9 hours reaches up to 34 % for the 

easterly wind (Fig. S2). These results shed light on the robustness of MISATEAM’s steady-wind assumption. It is most likely that 

the fit fails when the assumption of steady wind is not satisfied. In other words, the inherent fitting assumption is robust when the 

fit results have sufficient quality as defined in Sect. 2.2. 205 

We perform sensitivity analyses to investigate the potential impact of temporal variations in winds on the fit results. We extend 

the time windows used for calculating averaged wind fields from 1 h (i.e., at the overpass time) to 3 h (i.e., starting from the 

overpass time and extending into the past 2 h), 6, 9, and 12 h. We weight the winds based on their temporal proximity, i.e., the 

wind closer to the overpass time is given larger weight, following Eq. (3).  

𝑤4,6----- = ∑ 3*,,,-×8.*/01
2
*31
∑ 8.*/012
*31

,                                                      (3) 210 

Where h represents the number of hours prior to the overpass time. i and d denote an individual grid cell and day, respectively. 

wh,i,d is the wind for a specific grid cell i on day d at the time of h hours prior to the overpass time. N is the length of the time 

window used (units of hour). The weighted average winds 𝑤$,6 are further applied with MISATEAM to infer NOx lifetimes and 

emissions for investigated cities. We set t0 to a constant value of 3 derived from rounding the average NU-WRF lifetimes for all 

investigated cities (see details in Sect. 2.4). The fitting results are found to be relatively insensitive to the choice of t0. The 215 

differences of the fitted lifetimes and emissions are -2 ± 15 % and 3 ± 16 %, respectively, when we increase t0 by a factor of 2. 
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This is significantly smaller than the difference between the fit results based on weighted average winds and the winds at the 

overpass time (shown in Sect. 3.1). 

2.4 Performance evaluation 

In order to evaluate the fitting results, we infer given emissions and NU-WRF lifetimes from the NU-WRF inputs/outputs. The 220 

given emission Emis’ is derived by summing up NU-WRF NOx emissions from all grid cells within the fit interval. The NU-WRF 

lifetime τ’ can be computed by solving Eq. (1), i.e., 

𝜏9 = ∑!"#$%×[)*!"#$(,)./]
∑24(,)

,                                                                                                      (4)	

where E’(x) is the given NOx emission line densities under calm wind conditions, as function of distance x from the city center. 

For evaluation, we compute the correlation coefficient (R), the Normalized Mean Bias (NMB), and the Root Mean Squared Error 225 

(RMSE) of the fitted emissions and the given emissions for all investigated cities. The model performance metrics of NMB and 

RMSE for the emission (Emis) evaluation are defined as  

𝑁𝑀𝐵 = ∑ (2:$;,.2:$;,
4)5

,36
∑ 2:$;,

45
,36

,                                                              (5) 

and	

𝑅𝑀𝑆𝐸 = 4∑ (2:$;,.2:$;,
4)75

,36
<

,                                                (6)	230 

respectively, where i represents the individual city and n is the total number of cities used for evaluation. The metrics for lifetime 

evaluation are consistent with Eqs. (5) – (6) when replacing Emis with τ and Emis’ with τ’. A good method should have a large R, 

a near-zero NMB, and a small RMSE.  

3 Results and Discussion 

3.1 Evaluation 235 

We apply MISATEAM to 60 large cities over the US (see the selection criteria of cities in Sect. 2.1). For 5 cities, we are not able 

to initiate the fitting procedure, due to lack of observations under calm wind conditions to calculate LDcalm(x). We derive valid 

fitting results for 26 cities. The locations of the 26 cities are shown in Fig. 2. The other 29 cities without valid results either had 

small correlation coefficients (< 0.9) or large fitting errors (standard deviation error of τ > 10 %); those cities tend to have larger 

temporal variations in winds (similar to Fig. S2), which do not satisfy MISATEAM’s requirement for steady winds prior to satellite 240 

overpass.  

Figure 6 compares MISATEAM estimated lifetimes and emissions with the NU-WRF lifetimes and given emissions for the 26 

cities. The comparison shows good consistency in general. For results derived from the wind data sampled at the overpass time 

(hereafter referred to as “1 h wind”; red dots), values of R are 0.56 and 0.88 for lifetimes and emissions, respectively. The bias is 

rather small for the lifetime comparison with NMB of -0.04 and RMSE of 0.54. The bias is larger for emissions, primarily caused 245 

by the assumption of a constant NOx to NO2 ratio (ratio). The errors arising from the differences between ratio for individual cities 

and a constant value of 1.32 will be propagated into the resulting emissions. The impact of the prescribed ratio on inferring 

emissions will be discussed in more detail in this section (Fig. 7). 
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The use of wind data over 9 hours prior to the overpass time improves the performance of MISATEAM. Figure 6 compares the 

inferred lifetimes and emissions based on the 9 h weighted average of wind data (hereafter referred to as “9 h wind”; blue dots). 250 

The results derived from the weighted average wind data show larger correlations with R increasing from 0.56 to 0.79 for lifetimes 

and from 0.88 to 0.96 for emissions; and smaller bias with NMB decreasing from -0.04 to 0.02 for lifetimes and from 0.23 to 0.13 

for emissions, when comparing with those derived from the 1 h wind. We have performed the comparison using results based on 

the weighted averages of 3 h, 6 h, and 12 h wind data as well. The usage of wind information prior to the satellite overpass time 

succeeds in increasing the agreement in all these cases (Fig. S3).  255 

The importance of applying wind information prior to the satellite overpass time should not be overinterpreted. The fitting function 

Eq. (2) by definition is not capable of describing the NO2 plumes under significantly varying wind directions because such temporal 

variations are not considered in the fitting function. In this way, wind directions and the results inferring from different wind 

scenarios are not expected to vary significantly, as far as fits with sufficient quality are yielded. Only 6 out of 26 cities show 

relative differences larger than 20 % when comparing results derived from 1 h wind to those derived from 9 h wind.  260 

We examine a scenario, namely “NU-WRF NOx/NO2”, to investigate possible errors from the assumption of a constant ratio. We 

replace ratio with the ratio of NOx and NO2 calculated directly from NO2 and NO VCDs per grid cell by NU-WRF outputs, and 

then use MISATEAM for inferring NOx emissions. Any difference in the inferred emissions compared to the emissions based on 

the prescribed ratio of 1.32 (“this study”) can then be assumed to originate from errors in the assumption of ratio. Figure 7 compares 

the results using a prescribed ratio (blue dots) with those using NU-WRF NOx/NO2 (grey dots). The comparison shows nearly the 265 

same correlations to the given emissions, but a smaller bias for results based on NU-WRF NOx/NO2 with NMB dropping from 

0.13 to almost zero (0.03). The comparison suggests that the influence of changing ratio on derived emissions is limited, because 

its spatial variation is significantly smaller than that of NOx lifetime and NO2 columns (τ and LDcalm(x) in Eq. (1)). Considering the 

investigated cities are located all over the country and have a wide range of geographic features, we conclude that a constant ratio 

is a reasonable assumption without resulting in significant bias to the derived emissions for typical US cities. The errors associated 270 

with the assumption is estimated to be 10 %, consistent with our previous estimates based on literature reviews (Beirle et al., 2011; 

Liu et al., 2016b). However, for applications based on geostationary satellites with changing local observation time, the approach 

using a constant value for ratio is subject to larger uncertainties arising from the diurnal cycle of ratio (Han et al., 2011). 

We examine an additional scenario, namely “constant lifetime”, to show the necessity of deriving lifetimes for individual cities. 

Instead of individually fitted lifetimes for each city, we use the mean NU-WWRF lifetime of all cities (2.5 h) for the calculation 275 

of emissions in the “constant lifetime” scenario. The emissions correlation drops to -0.03 (Fig. 7), showing that individually fitted 

lifetimes are critical for this method. The bias is also larger with RMSE increasing by a factor of 3 compared to results based on 

the individually fitted lifetimes. This further improves our confidence that the derived variation of the fitted lifetimes carries 

important information on local variability of the oxidizing capacity of urban plumes. The individual lifetimes are well suited for 

the determination of emissions, suggested by the significantly improved consistency with given emissions. 280 

3.2 Comparison with previous methods 

We further evaluate MISATEAM by comparing the results with those derived from two previous approaches including Beirle et 

al. (2011) and Liu et al. (2016b). We apply all three approaches to fit lifetimes and emissions for all 26 cities investigated by this 

study. Note that we use the 9 h wind for all approaches for best performance and consistency.  

Figure 8A illustrates the comparison for inferring lifetimes. The approach of Beirle et al. (2011) does not predict lifetimes well, 285 

with a poor correlation (R = 0.01). This is not surprising, because by definition the method can only represent a single point source 
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convolved with a Gaussian function, and was not intended to be applied to mixed-sources with interfering emissions from nearby 

cities or industrial areas. For instance, it is capable of giving an accurate estimate for an isolated city of St. Louis in Missouri, with 

a relative difference of less than 10 % compared to the NU-WRF lifetime. However, for most cities with a polluted background, 

the fitted lifetimes are biased significantly due to the interference from surroundings. This is consistent with the previous findings 290 

for this approach: an additional source at 100 km with only 10% of the emissions of the source under investigation causes a lifetime 

bias of 20 %; for an interfering source of the same order as the source of interest, the method fails completely (Liu et al., 2016b). 

Several studies adopted a plume rotation technique (Pommier et al., 2013; Valin et al., 2013) to advance the approach of Beirle et 

al. (2011), which is not applicable to mixed-sources as well. These techniques rotate NO2 measurements centered over the city 

center so that NO2 columns under different wind directions are aligned in a common upwind-to-downwind direction. This increases 295 

the number of observations used for analysis without introducing additional errors for (quasi) point sources, compared with 

individually analyzing observations by wind directions as done in this study. However, for mixed-sources investigated in this 

study, use of such rotation techniques may result in significant bias by allocating the NO2 from interfering sources into a ring of 

elevated NO2 values around the source of the interest and thus amplifying the NO2 signal of the source. An illustration of this 

amplification can be found in Fig. S2 of Fioletov et al. (2015). 300 

It is interesting to note that the performance of the approach of Liu et al. (2016b) is also worse than MISATEAM, although they 

share the same concept of using the NO2 patterns observed under calm wind conditions as proxy of emission patterns instead of 

assuming a single point source as in Beirle et al. (2011). It is most likely that Liu et al. (2016b) overfits the model by introducing 

too many degrees of freedom. As suggested by Fig. 8A, the model function of Liu et al. (2016b) occasionally tries to “explain” 

changes of scaling factors by a shorter lifetime, resulting in a small R of 0.21. In MISATEAM, we decrease the number of fitting 305 

parameters from three in Liu et al. (2016b) to only one (see details in Eq. (A4) of Appendix A), which improves the robustness of 

the fit results.  

Emission comparisons in Fig. 8B show better agreement than lifetime comparisons in Fig. 8A for all approaches. MISATEAM-

derived emissions show the best consistency with the given emissions. According to mass balance, the magnitude of emissions 

equals the total mass of NOx divided by lifetime. In the evaluation for MISATEAM, the given emissions range from 57 mol h-1 to 310 

717 mol h-1 for all investigated cities, the variation in which is significantly larger than that in lifetimes ranging from 1.5 h to 3.7 

h. This finding also holds for the other two approaches. The other two approaches can achieve a good correlation with the given 

emissions by providing reasonable estimates for the magnitude of the total NOx mass, even though they fail to predict variations 

in lifetimes between cities. For instance, the results derived from the approach of Liu et al. (2016b) show a small R of 0.21 to the 

NU-WRF lifetimes, but a significantly stronger correlation to the given emissions of 0.94, which is comparable to that of 315 

MISATEAM-derived emissions. But Liu et al. (2016b)-derived emissions are still associated with larger biases arising from the 

estimates for lifetimes. The values of NMB are 0.13 and -0.21 for emissions derived from MISATEAM and the approach of Liu 

et al. (2016b), respectively, when comparing against the given emissions. Note that the derived and given emissions from the 

approach of Liu et al. (2016b) is smaller than the two other approaches, but does not indicate a smaller bias. Liu et al. (2016b) only 

aims to estimate emissions from the city center, considered as a (quasi) point source, instead of all sources in the urban area. In 320 

this way, emis and emis’, and thus RMSE are smaller than that for MISATEAM. 

3.3 Uncertainty analysis 

The good consistency in Sect. 3.1 increases our confidence that the fitted lifetimes and emissions represent the real-word 

characteristics well. We investigate their uncertainties in this session. 
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3.3.1 Sensitivity analysis 325 

Analogous to Beirle et al. (2011) and Liu et al. (2016b), we investigate the impact of the a-priori choice of fit and integration 

intervals, and wind layer height. The dependency of the fit results for τ and Emis on these three choices is tabulated in Table 1.  

The fitted lifetimes are generally robust with respect to changes of the fit and integration intervals, because the NO2 distribution 

under calm wind conditions, LDcalm(x), is a good representation of the emission pattern in any case. An increase of the fit interval 

in downwind direction by 50 km affects the resulting lifetimes by about -2 ± 11 %. The changes of derived lifetimes are also small 330 

when increasing the fit interval in upwind direction (4 ± 12 %) or integration interval (interval i + 25 km in Fig. 3； 4 ± 18 %) by 

50 km. MISATEAM succeeds in avoiding choosing intervals city by city manually, which has been done in previous studies in 

order to minimize the influence of other nearby sources. 

We use the change of the ratio of fitted emissions emis to given emissions emis', Δ(emis/emis'), to show the impact of the enlarged 

fit and integration intervals on emissions. We do not focus on the change of emissions, Δemis/emis, because the fitted emissions 335 

are expected to be sensitive to the enlarged intervals which include additional sources and thus more emissions. The fitted emissions 

show an average growth of 48 % associated with extending the integration interval by 50 km to increase the given emissions by 

36 %. The rise in emissions is similar to increasing the fit interval in the upwind direction by 50 km with 33 % for the given 

emissions and 42 % for the fitted emissions. However, for the scenario of a larger downwind-direction, upwind-direction and 

integration interval, the change of the ratio of emis to emis' is rather small, which is 3, 9, and 9 % on average, respectively; the 340 

fitted emissions show good consistency with the given emissions, reporting the correlation coefficient of 0.95, 0.92, and 0.86, 

respectively. It is interesting to note that the fitted emissions are rather insensitive to the extension of the fit interval in downwind 

direction. Neither the given nor the fitted emissions are significantly changed by increasing the downwind-direction interval from 

150 km to 200 km. It suggests that we succeed in capturing the complete downwind plume and reaching the background areas by 

the default setting of 150 km for the investigated cities in this study. 345 

Uncertainties associated with the choice of layer height (e.g., 500 m, 1000 m, or 2000 m) are relatively small. The resulting lifetimes 

and emissions change about 16 % and -9 % on average when averaging the wind fields from surface to up to 500 m. The average 

changes are -11 % and 13 % for inferring lifetimes and emissions, respectively, when adopting the wind layer height of 2000 m. 

This is consistent with the findings in the previous studies (e.g., Beirle et al., 2011 and Liu et al., 2016b). 

We also apply MISATEAM to year-round NO2 data to investigate the impact of including winter data on the performance of the 350 

method. We keep default settings of MISATEAM as described in Sect. 2.2 for the fit. As expected, the fitted results differ more 

significantly from given values compared with results based on using only non-winter data. The bias is larger with NMB changing 

from 0.02 to -0.14 for lifetimes and from 0.13 to 0.27 for emissions. This improves our confidence that MISATEAM, most likely 

its inherent steady-wind assumption, is more vulnerable during the winter season with longer NOx lifetimes. 

3.3.2 Uncertainty quantification 355 

We calculate the uncertainties of inferred results based on the fitting metrics (Fig. 6 and 7) and the dependencies on the a priori 

settings as investigated in the above sensitivity studies. We attribute uncertainties of 15 % and 20 % to the derived lifetimes and 

emissions, respectively, based on the mean of relative differences for all 26 cities (14 % for lifetimes and 21 % for emissions). The 

derived emissions have higher uncertainties arising from uncertainty in the NOx to NO2 scaling factor. The derived emissions in 

terms of NO2 are upscaled to NOx based on a constant NOx/NO2 ratio of 1.32, representing typical urban conditions at noon 360 

(Seinfeld and Pandis, 2006). Since MISATEAM aims to provide estimates for cloud-free satellite observations at the overpass time 
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close to noon of non-winter seasons and it focuses on polluted regions with generally high tropospheric ozone, this value is 

reasonably accurate. However, the NOx/NO2 ratio might vary locally. NU-WRF reports 1.4 ± 0.1 with a range of 1.2 – 1.6. The 

overall impact of variations in this ratio is shown to be relatively small (see Sect. 3.1). 

We can identify additional uncertainties that would be present when applying MISATEAM to “real” data instead of synthetic data. 365 

The uncertainty of satellite NO2 observations propagates into the uncertainty of emissions. The uncertainty of satellite NO2 

observations has less impact on the lifetime estimation and only results in errors for lifetimes when satellite observations have 

systematic errors depending on the distance from the source. The total uncertainty of NO2 VCDs results from uncertainties in the 

spectral fit in the retrieval, the stratospheric and tropospheric separation, and the tropospheric air mass factor (AMF). In the model 

function of MISATEAM, a possible bias associated with the stratospheric and tropospheric separation is eliminated by use of the 370 

background term b. The uncertainty in the spectral fit in the retrieval is rather small compared to that associated with AMF 

(Boersma et al., 2007). We estimated the overall uncertainty primarily arising from the uncertainty in the tropospheric AMF is 

about 25 % based on validation of TROPOMI NO2 products with ground-based measurements (e.g., Griffin et al., 2019; Ialongo 

et al., 2020; Zhao et al., 2020). Since the random uncertainty of the tropospheric NO2 observations could be suppressed due to the 

consideration of long-term means, this estimate may be conservative.  375 

The presence of clouds is an additional source of uncertainties. We are required to exclude satellite observations with significant 

cloud fractions in the instrument’s field of view. For TROPOMI NO2 products, we usually remove data with cloud radiance fraction 

≥ 0.5. A bias is observed in NO2 VCD averages as a result of removing the data during cloudy conditions (Geddes et al., 2012). 

The bias is associated with changing photochemistry, meteorology, and pollutant transport, which may also have impacts on 

NOx/NO2 ratio and NOx lifetime. The magnitude of a bias is expected to vary from city to city. We calculate the fraction of cloudy 380 

scenes to total scenes over the fit domain of individual cities based on TROPOMI NO2 products from April through September, 

2020. The fractions range from 16 – 56 % for the considered cities. For cities with heavy cloud cover, like New York, Philadelphia, 

and Washington D.C. with a fraction > 50%, the impact associated with cloud selection criteria is expected to be larger than cities 

with more clear sky. We estimated an uncertainty of 10% arising from cloud selection criteria based on the evaluation performed 

at urban sites (Geddes et al., 2012). 385 

Additionally, the accuracy of wind fields contributes to the uncertainties of both lifetimes and emissions. It can affect the sorting 

of the NO2 VCDs according to wind directions as well as the conversion of the downwind decay from a function of distance into 

a function of time in Eq. (2). We estimate the uncertainties associated with the wind data to be approximately 30 % based on the 

comparison of wind information between reanalysis product and sounding measurements (see Table S3 in Liu et al., 2016b). 

We define total uncertainties of the resulting lifetimes and emissions as the root of the quadratic sum of the above-mentioned error 390 

contributions that are assumed to be independent. We estimated that total uncertainties of NOx lifetime and emissions for a US city 

are 43 % and 45 %, respectively. 

4 Conclusions and future work 

In this work we developed a CTM-independent approach, MISATEAM, to infer NOx lifetimes and emissions from satellite NO2 

observations. As in Liu et al. (2016b), MISATEAM is developed for sources with polluted backgrounds. It adopts the approach of 395 

using NO2 spatial patterns under calm wind conditions as a proxy of the spatial patterns of emission sources to account for 

interferences from neighboring strong sources. MISATEAM improves upon Liu et al. (2016b) by advancing the fitting function to 

reduce the number of parameters and to provide estimations of NOx lifetimes and emissions simultaneously. 
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We applied MISATEAM to synthetic tropospheric NO2 VCDs over the continental US provided by a NU-WRF high resolution 

model simulation. We found that our new method for determining NOx lifetimes and emissions was applicable to 26 cities. The 400 

derived results were generally in good agreement with the NU-WRF given values. In existing studies, wind fields sampled 

simultaneously with satellite observations were used to drive the CTM-independent approach. We investigated the impact of 

temporal variations in winds on fitted results and found the use of wind data prior to satellite overpass time improves performance 

of our approach. R between inferred and NU-WRF lifetimes increased from 0.56 to 0.79 and for emissions increased from 0.88 to 

0.96 when comparing results based on 1 h and 9 h winds, respectively. The comparison between MISATEAM and the approaches 405 

of Beirle et al. (2011) and Liu et al. (2016b) suggests that MISATEAM is more suitable for non-isolated sources, particularly for 

lifetime estimation. Lifetimes inferred from the previous approaches showed rather weak correlations with respect to NU-WRF 

lifetimes (0.01 for Beirle et al. (2011) and 0.21 for Liu et al. (2016b)) as compared with that from MISATEAM (0.79). 

We plan to apply MISATEAM to observations from TROPOMI and geostationary satellite instruments including the Korean 

Geostationary Environmental Monitoring Spectrometer (GEMS; Kim et al., 2012), NASA Tropospheric Emissions: Monitoring of 410 

Pollution (TEMPO; Chance et al., 2012), and ESA Sentinel-4 (Ingmann et al., 2012). These instruments have spatial resolutions 

similar to the NU-WRF simulation (4 km) used in this study. We estimate that uncertainties in NOx lifetime and emissions arising 

from MISATEAM are approximately 15% and 20%, respectively, for typical (US) cities. Additional uncertainties are associated 

with wind errors in the reanalysis dataset as well as errors in the satellite NO2 retrievals. We will attempt to reconcile bottom-up 

and satellite-derived urban emissions to generate a merged inventory (e.g., Liu et al., 2018) to provide timely NOx emissions 415 

estimation for air quality and climate modeling communities. 
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Appendices 

Appendix A Derivation of the model function f(x) 610 

We derive Eq. (1) based on the continuity equation for steady state, following Eqs. (A1) – (A2) given by  

𝐸(𝑥) = 𝑆(𝑥) + 𝐷(𝑥),                                       (A1) 
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𝑆(𝑥) = !"#$%	×	)*(,)
1

,                                       (A2)	

where E(s), S(x) and D(x) represent the line densities of NOx emission, sink and divergence, respectively. As the NOx sinks are 

dominated by the chemical loss due to reaction of NO2 with OH at the local overpass time of TROPOMI (13:30 local time), sink 615 

S(x) can be described by a first order time constant τ and thus is proportional to the NO2 line density LD(x) itself as shown in Eq. 

(A2). Beirle et al. (2019) provided further details.  

We use NO2 line densities under calm wind conditions, LDcalm(x), to simplify Eqs. (A1) – (A2). In principle, there is no NOx 

transport under perfect calm wind conditions (i.e., divergence D(x) is zero), and thus the emission E(x) equals the sink S(x) given 

by !"#$%	×	)*!"#$(,)
1

. However, we use the threshold of 2 m s-1, instead of 0 m s-1, as the criterion for calm wind to get a good 620 

compromise between sufficient sample sizes for both the calculation of line densities for calm conditions as well as for windy 

conditions. In order to account for the error associated with this criterion and possible systemic differences between windy and 

calm wind conditions (e.g., cloud conditions, vertical profiles, or lifetimes), and to account for the upper tropospheric background 

column which is not driven by local emissions, we introduce a constant background b in the fitting function, as given by Eq. (A3).  

𝐸(𝑥) = 𝑆(𝑥) = !"#$%	×	[)*!"#$(,)	.	/]
1

,                                   (A3) 625 

We derive Eq. (2) following the concept proposed by Liu et al. (2016). We use LDcalm(x) as a proxy for emissions instead of 

assuming a single point source as in previous studies (e.g., Beirle et al., 2011; Laughner et al., 2019). The NO2 line density without 

considering the chemical decay is given by 2(,)
!"#$%	×	3

 based on a Gaussian plume model. This formulation is different from the 

model function f(x)’ originally proposed by Liu et al. (2016), which was given by  

𝑓(𝑥)9 = 𝑎	 × 	𝐿𝐷=">:(𝑥) ∗ 𝑒
. %
&	×	) + 𝑏,                                                                            (A4) 630 

We replaced one fitting parameter, the scaling factor a in f(x)’, with variables that have physical meanings in the new model 

function f(x). The new formulation was shown to improve the model performance in Sect. 3.2. We then convolved 2(,)
!"#$%	×	3

 with 

an exponential function 𝑒.
%

&	×	) describing the chemical decay to form the new model function f(x)), implicitly assuming a constant 

effective lifetime τ.  
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 635 

 
Figure 1 Schematic of our evaluation system to assess the accuracy of the inferring NOx lifetimes and emissions derived from 

MISATEAM. The blue symbols represent the inputs and outputs of MISATEAM. The orange symbols represent the information derived 

from NU-WRF. 

 640 

 
Figure 2 Domain used for simulation. (A) Mean NU-WRF tropospheric NO2 vertical column densities. (B) Mean NEI NOx emissions 

fluxes used to drive the NU-WRF simulation. Hourly mean data at the local overpass time of TROPOMI are averaged from April through 

September, 2016. Locations of the 26 cities investigated in this study are labelled by circles (see Section 3).  

 645 
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Figure 3 Sketch of the definition of Line Densities. For each wind direction, mean NO2 VCDs are integrated in across-wind 

direction y over the interval i, resulting in line densities LD(x). The fit is performed over the entire upwind interval (fupwind) 

and downwind intervals (fdownwind). The city center is the coordinate origin. The top panel shows the NU-WRF tropospheric 

NO2 VCDs around New York City under southwesterly wind, however the image is rotated by 45 degrees in the clockwise 650 

direction to present NO2 VCDs in an upwind-downwind direction. The city of Philadelphia and Long Island are located in 

the upwind and downwind direction, respectively. 
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Figure 4 NO2 line densities around New York for different wind direction sectors. Circles: NO2 line densities for calm (blue circles) and 655 
(A) southeasterly, (B) southerly, (C) southwesterly, (D) northeasterly, and (E) northerly winds (red circles) as a function of the distance 

x to New York center. Red line: the fit result f(x). The numbers indicate the fitted NOx lifetime (τ), derived emissions (Emis) and given 

emissions (Emis’). NO2 line densities are derived from NO2 VCDs averaged from April through September, 2016. NO2 line densities for 

the remaining wind direction sectors are discarded due to the fitting results being of insufficient quality. 

 660 
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Figure 5 Wind barbs around New York City for different times of the day. All southwesterly winds at the local overpass time of 

TROPOMI from April to September of 2016 are averaged and shown in (I). Wind barbs for the southwesterly winds backward 

trajectories from 8 to 1 h prior to the overpass time are displayed in (A) – (H). Wind speed is given in the units of knots, which is a 

nautical miles per hour (1.9 km per hour). Each short and long barb represents 5 knots (9.3 km/h) and 10 knots (18.5 km/h), respectively.  665 

 

https://doi.org/10.5194/acp-2021-642
Preprint. Discussion started: 19 August 2021
c© Author(s) 2021. CC BY 4.0 License.



23 
 

 
Figure 6 Scatterplots of (A) the fitted NOx lifetime τ as compared to the NU-WRF lifetime τ’; and (B) the fitted NOx emissions Emis as 

compared to the given emissions Emis’.  Error bars show the standard error of the fitted results for all available wind directions. 

Standard error is defined as standard deviation divided by √𝒏, with n being the number of available wind directions.  The results 670 
deriving from the wind fields sampled at the TROPOMI overpass time (“1 h”) and the weighted average of 9 h wind fields (“9 h”) are 

displayed by red and blue dots, respectively. The dash line represents the 1:1 line.
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 675 
Figure 7 Scatterplot of the fitted total NOx emissions Emis as compared to the given total emissions Emis’ under different scenarios. 

The blue, grey and red dots represent the scenarios based on the fitted lifetime τ and a constant NOx to NO2 ratio of 1.32 (“this study”), 

the fitted lifetime τ and the NOx to NO2 ratio given by NU-WRF model (“NU-WRF NOx/NO2”), and a constant lifetime of 2.5 hours and 

a constant NOx to NO2 ratio of 1.32 (“constant lifetime”), respectively. The dash line represents the 1:1 line. Statistics provided in the 

inset table.  680 
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Figure 8 Scatterplots of (A) the fitted NOx lifetime τ as compared to the NU-WRF lifetime τ’; and (B) the fitted NOx emissions Emis as 

compared to the given emissions Emis’.  Error bars show the standard error of the fitted results for all available wind directions. 685 

Standard error is defined as standard deviation divided by √𝒏, with n being the number of available wind directions.  The results 

derived from MISATEAM, the approach of Beirle et al. (2011), and the approach of Liu et al. (2016b) are displayed by blue, grey and 

red dots, respectively. The dash line represents the 1:1 line. Note that figure B is plotted in a logarithmic scale. 

 

Table 1. The mean relative change of lifetimes and emissions for different choices of fit and integration intervals, and wind fields. 690 

  
Intervaldownwinda 

+ 50 km 
Intervalupwinda 

+ 50 km 
Intervalintegratea 

+ 50 km 500 mb 2000 mb  
mean[Δτ'/τ'] 0% 9% 8% 2% -2%  

mean[Δτ/τ] -2% 4% 4% 16% -11%  

mean[Δemis'/emis'] 0% 33% 36% 0% 0%  

mean[Δemis/emis] 2% 42% 48% -9% 13%  

mean[Δ(emis/emis')] 3% 9% 9% -8% 12%  

aIntervaldownwind = 150 km, Intervalupwind = 75 km, Intervalintegrate = 150 km  

bthe wind fields are averaged from the surface up to this height  
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